skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Glaudin, Lilian E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Various strategies are available to construct iteratively a common fixed point of nonexpansive operators by activating only a block of operators at each iteration. In the more challenging class of composite fixed point problems involving operators that do not share common fixed points, current methods require the activation of all the operators at each iteration, and the question of maintaining convergence while updating only blocks of operators is open. We propose a method that achieves this goal and analyze its asymptotic behavior. Weak, strong, and linear convergence results are established by exploiting a connection with the theory of concentrating arrays. Applications to several nonlinear and nonsmooth analysis problems are presented, ranging from monotone inclusions and inconsistent feasibility problems, to variational inequalities and minimization problems arising in data science. 
    more » « less
  2. Structured convex optimization problems in image recovery typically involve a mix of smooth and nonsmooth functions. The common practice is to activate the smooth functions via their gradient and the nonsmooth ones via their proximity operator. We show that, although intuitively natural, this approach is not necessarily the most efficient numerically and that, in particular, activating all the functions proximally may be advantageous. To make this viewpoint viable computationally, we derive a number of new examples of proximity operators of smooth convex functions arising in applications. 
    more » « less